INORGANIC COMPOUNDS

Acta Cryst. (1995). C51, 1475-1478

$PrMo_8O_{14}$, a Fourth Crystalline Form of the Series RMo_8O_{14} (R = La, Ce, Pr, Nd, Sm)

G. KERIHUEL AND P. GOUGEON

Université de Rennes I, Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 1495, Avenue du Général Leclerc, 35042 Rennes CEDEX, France

(Received 15 December 1994; accepted 17 February 1995)

Abstract

The crystal structure of PrMo₈O₁₄ contains a mixture of cis-edge-sharing and trans bi-face-capped octahedral Mo₈ clusters in the ratio 2:1. The Mo₈ clusters and the O atoms, the arrangement of which derives from a close packing with the layer sequence ABAC..., form layers parallel to the bc plane of the orthorhombic unit cell. The Mo-Mo distances range from 2.587(2) to 2.771(2) Å and from 2.595(1) to 2.871 (2) Å in the trans and cis-edge-sharing isomeric clusters, respectively. The shortest Mo-Mo distance between the Mo₈ clusters within the same layer is 3.053(1) Å and that between the clusters of adjacent layers is 3.634(2)Å. The Mo-O distances are between 2.036(9) and 2.125(11) Å in the trans isomer, and between 1.907 (13) and 2.189 (13) Å in the cisedge-sharing isomer. The environment of each of the two crystallographically independent Pr³⁺ ions comprises twelve O atoms forming a distorted cuboctahedron. The Pr-O distances lie between 2.530(10) and 2.913 (8) Å, and between 2.420 (7) and 3.198 (8) Å for the Pr(1) and Pr(2) sites, respectively.

Comment

This work constitutes part of our studies on the series of compounds RMo_8O_{14} (R = La, Ce, Pr, Nd, Sm) containing bi-face-capped octahedral Mo₈ clusters. These compounds have been obtained recently by fused-salt electrolysis in the case of LaMo_{8-x}O₁₄ (x = 0.0 and 0.3) (Leligny, Ledesert, Labbé, Raveau & McCarroll, 1990; Leligny, Labbé, Ledesert, Hervieu, Raveau & Mc-Carroll 1993) and by solid-state reaction at high temperature for the members with R = La, Ce, Pr, Nd and Sm (Gougeon & McCarley, 1991; Kerihuel & Gougeon, 1995). Up to now, three different crystalline forms have been found for the RMo_8O_{14} compounds. In all of these forms, the R—O network is similar and they differ only by the arrangement of the capping Mo atoms of

the Mo₈ clusters. The first crystalline form was observed for the compounds LaMo_{7.7}O₁₄ (Leligny et al., 1990) and NdMo₈O₁₄ (Gougeon & McCarley, 1991), obtained by fused-salt electrolysis and by solid-state reaction, respectively. Both compounds crystallize in the non-centrosymmetric space group Aba2 with the following parameters: $a_{La} = 9.196(1), b_{La} = 9.985(1), c_{La} =$ 11.171 (1) Å; $a_{\text{Nd}} = 9.209$ (3), $b_{\text{Nd}} = 10.008$ (2), $c_{\text{Nd}} =$ 11.143 (4) Å. Their structures comprise only cis-edgesharing bi-face-capped Mo₈ clusters. The second form, which was described by Leligny et al. (1993), corresponds to that shown by crystals of the stoichiometric compound LaMo₈O₁₄, synthesized by fused-salt electrolysis. The crystal structure of the latter compound is more complex due to a one-dimensional commensurate modulation of wavevector $a^* = b^*/3$ [a = 11.129(1), b = 10.000(1), c = 9.218(1)Å]. The structure that was solved in superspace group $P_{\overline{111}}^{C2ca}$ consists of *cis*-edge-sharing and *trans* bi-face-capped Mo₈ clusters, each occurring in two distinct configurations. More recently, a third form corresponding to the CeMo₈O₁₄ compound [space group Pbcn; a = 9.1937(7), b =11.121 (1), c = 20.014 (1) Å (Kerihuel & Gougeon, 1995), obtained by solid-state reaction, was discovered. The Mo network of this compound is based on a well ordered mixture of cis-edge-sharing and trans bi-facecapped octahedral Mo₈ clusters in equal proportion. We present here the structure of PrMo₈O₁₄ which constitutes the fourth crystalline form in the RMo_8O_{14} series.

Like the structure of CeMo₈O₁₄, that of PrMo₈O₁₄ is characterized by the coexistence of cis-edge-sharing and trans bi-face-capped octahedral Mo₈ clusters. However, whereas the two isomeric forms are in equal proportions in the former compound, they are in the ratio 2:1 in the Pr compound. As a consequence of this, we observed a tripling, instead of doubling, of the b parameter of the unit cell of NdMo₈O₁₄ (c parameter in CeMo₈O₁₄ and PrMo₈O₁₄) in which only the cis isomer of the Mo₈ cluster occurs. The other parameters are close to those determined for NdMo₈O₁₄ and CeMo₈O₁₄. Both isomeric forms of the Mo₈ cluster occurring in PrMo₈O₁₄ are shown in Fig. 1 with their O-atom environments. Within the Mo₈O₂₄ cluster units thus formed, the two capping Mo atoms have six O-atom neighbours forming a distorted octahedron and the remaining six Mo atoms have only five O atoms in an approximately square-pyramidal arrangement.

Fig. 2(*a*) is an *ORTEPII* (Johnson, 1976) drawing of the unit cell of $PrMo_8O_{14}$ as viewed parallel to the *b* axis. From this perspective view, the layer arrangement of the Mo₈ clusters and O atoms can be seen. The O-atom framework is similar to those in LaMo_{7.7}O₁₄, NdMo₈O₁₄ and CeMo₈O₁₄; it derives from a close packing with the layer sequence *ABAC*... where in

Fig. 1. (a) The *trans* and (b) the *cis*-edge-sharing bi-face-capped Mo₈ clusters with their O-atom environments.

Fig. 2. (a) Perspective view of the structure along the b axis. The Mo₈ clusters are emphasized by bold lines. (b) The arrangement of the Mo₈ clusters within the unit cell.

the A layers some of the O atoms are missing in an ordered way or are substituted by the Pr ions, and the B and C layers are entirely occupied by O atoms. Fig. 2(b) depicts the Mo₈ clusters within the unit cell.

The Mo—Mo distances within the centrosymmetric trans bi-face-capped Mo₈ cluster show no large differences from those previously reported for CeMo₈O₁₄ and range from 2.587 (2) to 2.771 (2) Å [2.5825 (9) to 2.778 (1) Å in CeMo₈O₁₄]. The average value of 2.704 Å is slightly lower than that observed in the Mo₈ cluster occurring in CeMo₈O₁₄ (2.708 Å). The Mo-O distances lie between 2.036 (9) and 2.125 (11) Å [2.027 (6)-2.110(7) Å in CeMo₈O₁₄] with an average distance of 2.069 Å [2.062 Å for the *trans* isomer in CeMo₈O₁₄]. The cis isomers present in PrMo₈O₁₄ have no imposed symmetry, whereas those previously observed in NdMo₈O₁₄ and CeMo₈O₁₄ possess C_2 symmetry. The Mo-Mo distances cover a range from 2.595(1) to 2.871 (2) Å, slightly narrower than for the cis isomer occurring in CeMo₈O₁₄ [2.5958 (8)-2.886 (2) Å] but wider than in NdMo₈O₁₄ [2.590 (1)–2.848 (1) Å]. The mean Mo-Mo distance is 2.735 Å and is between the average distance of 2.731 Å in NdMo₈O₁₄, and that of 2.738 Å in CeMo₈O₁₄. As already observed for CeMo₈O₁₄, the range of Mo-O distances in the cis isomer [1.907 (13)-2.189 (13) Å] is much broader than in the trans form. The average Mo-O distance is 2.042 Å and corresponds to that in CeMo₈O₁₄ (2.042 Å). For NdMo₈O₁₄, the average Mo-O distance is slightly longer (2.050 Å). The shortest Mo-Mo intercluster distances within a given layer are 3.053(1) Å between the two different isomers and 3.086 (2) Å between adjacent cis-edge-sharing Mo₈ clusters, compared to 3.078 (1) Å in LaMo_{7.7}O₁₄, 3.068 (1) Å in NdMo₈O₁₄ and 3.0790 (9) Å in CeMo₈O₁₄. On the other hand, the shortest Mo-Mo distance between adjacent cluster layers is as long as 3,634 (1) Å, excluding any direct Mo-Mo interactions. Consequently, although the structure is three dimensional overall, it can be considered to be two dimensional with respect to the Mo network. The Pr³⁺ ions occupy two crystallographically independent sites. The Pr(1) ions are located at the origin of the unit cell. They are surrounded by 12 O atoms forming a distorted cuboctahedron. The Pr(1)-O distances range from 2.53(1) to 2.913(8) Å. The Pr(2) ions occupy a general position. Their environment also consists of 12 O atoms forming a highly distorted cuboctahedron, as reflected in the Pr(2) - O distances, which lie between 2.420 (7) and 3.198 (8) Å.

Experimental

Single crystals were obtained by heating a mixture of overall composition $Pr_3Mo_{35}O_{62}$ (starting materials: Pr_6O_{11} , MoO_3 and Mo) in a sealed molybdenum crucible at about 2200 K for 5 min. The crucible was then cooled at a rate of 100 K h⁻¹ to 1373 K and finally furnace-cooled to room temperature.

G. KERIHUEL AND P. GOUGEON

Crystal d	ata				O(13)	0.987(1)	0.8639	(6) 0.2516 (7) 0.1020	5(3) 0.4 (1)	
PrM ₀ ₀ O ₁	4		Mo $K\alpha$ radiatio	n	O(14) O(15)	0.754(1)	0.8041	(7) 0.1930 (7) 0.3602	2(3) 0.5(1) 0.5(1)	
$M_{\rm c} = 113$	⁴ 17 47		$\lambda = 0.71073$ Å	••	O(16)	0.736 (1)	0.5094	(6) 0.7807	7 (3) 0.3 (1)	
Orthorho	mbic		Cell parameters	from 25	O(17)	1.010(1)	0.8927	(6) 0.7551	I (2) 0.4 (1)	
Dhea	more		reflections	110111 25	O(18)	0.765 (1)	0.3893	(7) 0.6918	3 (3) 0.4 (1)	
$r = 0.2027 (c)^{\frac{1}{2}}$			$A = 7 15 4^{\circ}$		O(19)	0.764 (1)	0.6154	(7) 0.3583	3(3) 0.5(1)	
a = 9.203	57 (0) A		$\theta = 7 - 13.4$	-1	O(20)	0.986(1)	0.8894	(/) 0.5/80	5(2) 0.4(1) 7(3) 0.37(9)	
D = 11.11	14 (2) A		$\mu = 13.995 \text{ mm}$		0(21)	0.995 (1)	0.2017	(0) 0.3332	2 (3) 0.57 (9)	
c = 30.01	12(5) A		I = 295 K							
V = 3069	9.9 (8) A ^s		Irregular	o o						
Z = 12			$0.12 \times 0.10 \times 0.10 \text{ mm}$			Table 2	Selected	hand distanc	$ras(\dot{\Delta})$	
$D_x = 7.350 \text{ Mg m}^{-3}$ Black										
					trans-N	lo ₈ cluster	2 697 (2)	M-(1) 0(2)	2 112 (0)	
Data coll	ection				Mo(1)-	-Mo(4) Mo(2)	2.587 (2)	MO(1) = O(3)	2.115 (9)	
Enraf-No	onius CAD-4		3150 observed	reflections	Mo(1)-	-Mo(2)	2.621 (2)	Mo(2)	2.045 (10)	
diffract	tometer		$[I > 2.5\sigma(I)]$				(-,	Mo(2)-O(1)	2.050 (11)	
$\omega/2\theta$ scat	ns		$\theta_{\rm max} = 35^{\circ}$		Mo(2)—	-Mo(3)	2.725 (2)	Mo(2)—O(5)	2.061 (10)	
Absorptio	on correction	•	$h = 0 \rightarrow 14$		Mo(2)-	-Mo(3)	2.757 (2)	Mo(2)—O(7)	2.061 (10)	
refined from ΔF		•	$k = 0 \rightarrow 17$		Mo(2)-	-Mo(4)	2.757(2)	M0(2)—O(4)	2.125 (11)	
(Walke	er & Stuart 1	983)	$l = 0 \rightarrow 48$		1410(2)	-1410(4)	2.771 (2)	Mo(3)	2.042 (8)	
T _	0.21 T = -	- 0.25	3 standard rafle	ations	Mo(3)-	-Mo(4)	2.744 (2)	Mo(3)O(6)	2.054 (8)	
7445 mo	$0.21, I_{\text{max}} =$	- 0.25	5 stanuaru rene		Mo(3)-	-Mo(4)	2.767 (2)	Mo(3)-O(5)	2.058 (10)	
7445 ind	asuled lefted	actions	intequency: 90	11111	Mo(4)—	-Mo(12)*	3.053 (1)	Mo(3)-O(1)	2.062 (11)	
7445 ind	ependent ren	ections	intensity deca	ıy: <1%		0(0)	2 020 (0)	Mo(3)—O(10)) 2.077 (1)	
D C					Mo(1)-	-0(8)	2.039(8)	$M_{0}(4) = O(7)$	2 036 (9)	
Refineme	ent				Mo(1)-	-O(2) -O(7)	2.069 (10)	Mo(4) = O(7) Mo(4) = O(8)	2.068 (9)	
Refineme	ent on F		$\Delta \rho_{\rm max} = 3.34 \ {\rm e}$	Å ⁻³	Mo(1)-	-O(5)	2.079 (11)	Mo(4)—O(9)	2.080 (10)	
R = 0.04	2		$\Delta \rho_{\rm min} = -1.21$	e Å ⁻³	Mo(1)-	-O(1)	2.094 (10)	Mo(4)-O(10)) 2.081 (11)	
wR = 0.0)44		Extinction corre	ection: Stout				Mo(4)—O(6)	2.095 (9)	
S = 1.649	9		& Jensen (19	68)						
3150 refl	ections		Extinction coef	ficient:	cis-Mo	8 cluster	2 ((2) (2)	Ma(8) Ma(1)	2) 2 509 (1)	
200 percentors			$6.84(2) \times 10^{-8}$		Mo(5)-	-Mo(0) -Mo(9)	2.002 (2)	Mo(8) - Mo(1)	2) 2.398(1) $2.728(2)$	
	$\frac{11}{12} \left(\frac{2}{5} \right)^{2}$		Atomic scatteri	na factors	Mo(5)-	-Mo(8)	2.736 (2)	Mo(8)—Mo(9) 2.805 (2)	
$w = 4F_0/[\sigma^2(F_0)]$			from International Tables		Mo(5)-	-Mo(7)	2.740 (2)	., .	,	
$+ (0.02F_o^2)^2$]			for X ray Cr	Mo(5)-	-Mo(11)†	3.086 (2)	Mo(9)-Mo(1	1) 2.684 (2)		
$(\Delta/\sigma)_{\rm max}$	x < 0.01		$\int \partial r A - r a y C r$	ysianograpny N			2 722 (2)	Mo(9)—Mo(1	2) 2.856 (2)	
			(1974, vol. 1	V)	Mo(6)-	-Mo(7) -Mo(10)	2.723 (2)	MO(9)—MO(1	0) 2.871(2)	
					Mo(6)-	-Mo(8)	2.756 (2)	Mo(10)Mo(12) 2.735 (2)	
			. .					Mo(10)-Mo(11) 2.771 (2)	
Table 1.	Fractional	atomic c	oordinates and	isotropic or	Mo(7)-	-Mo(11)	2.595 (1)			
equiv	valent isotro	pic displa	icement param	eters (A ²)	Mo(7)-	-Mo(9)	2.715 (2)		2 022 (10)	
-					Mo(7)—	-Mo(10)	2.814 (2)	$M_0(9) = O(10)$ $M_0(9) = O(11)$	2.022(10) 2.038(9)	
В	iso for O atoms	s; $B_{eq} = (4/)$	3) ム _i ム _j /J _{ij} a _i .a _j for	others.	Mo(5)-	-0(12)	1.907 (13)	Mo(9)-O(17)	2.050(9)	
	x	у	Z	$B_{\rm iso}/B_{\rm eq}$	Mo(5)-	-O(13)	1.983 (10)	Mo(9)-O(19)) 2.087 (10)	
Pr(1)	1	0	1/2	0.65 (1)	Mo(5)-	-O(15)	1.999 (10)	Mo(9)—O(21)) 2.144 (13)	
PT(2)	1.0008(1)	0.02713	(5) $0.16395(2)(8)$ $0.05291(3)$	0.474 (8)	Mo(5)-	-0(16)	2.052 (10)	N. (10) 0(2)	1 000 (8)	
Mo(1) Mo(2)	0.8783(1)	-0.00928	(8) 0.05281 (3) (8) 0.05283 (3)	0.23(1)	Mo(5)-	-0(11)	2.097 (9)	$M_0(10) = O(2)$	1.999(8)	
Mo(2)	1.1211(1)	0.12316	(8) 0.02879 (3)	0.23 (1)	Mo(6)-	-0(12)	1.965 (14)	Mo(10)—O(1)	2.010(11) 8) $2.056(10)$	
Mo(4)	0.6237 (1)	0.62350	(8) 0.97526 (3)	0.24 (1)	Mo(6)-	-O(3)	1.984 (10)	Mo(10)-O(20	0) 2.064 (9)	
Mo(5)	0.8799(1)	-0.12861	(8) 0.30879 (3)	0.26(1)	Mo(6)-	-O(14)	1.986 (10)	Mo(10)	1) 2.189 (13)	
Mo(6)	1.1193 (1)	-0.12910	(8) 0.35857 (3) (7) 0.27006 (2)	0.24 (1)	Mo(6)-	-O(4)	2.035 (11)			
Mo(7) Mo(8)	1.1209(1)	-0.006/4	(7) 0.27996 (3) (8) 0.38690 (3)	0.20(1)	Mo(6)	-O(2)	2.068 (8)	Mo(11)—O(11)	$\begin{array}{c} 1) & 1.977(10) \\ 2 & 036(10) \end{array}$	
Mo(8)	0.8774(1)	0.11496	(8) 0.30403 (3)	0.26 (1)	Mo(7)	-0(17)	2 039 (11)	Mo(11)	2.030(10) 1) $2.044(14)$	
Mo(10)	1.1260(1)	0.11661	(8) 0.36182 (3)	0.27 (1)	Mo(7)-	-O(18)	2.045 (10)	Mo(11)-O(1	3) 2.049 (10)	
Mo(11)	0.8773 (1)	-0.27331	(8) 0.22102 (3)	0.24 (1)	Mo(7)-	-O(14)	2.054 (10)	Mo(11)-O(1	7) 2.071 (11)	
Mo(12)	0.8786(1)	0.23197	(8) 0.38876 (3)	0.24 (1)	Mo(7)-	-0(13)	2.073 (11)	Mo(11)-O(14	4) 2.079 (10)	
O(1)	0.761 (1)	0.3689 ()	(0.0246(3))	0.6(1)	Mo(7)-	-O(16)	2.107 (11)		1.021 (0)	
O(2) O(3)	0.7380 (9)	0.2384 ()	(3) $(108(3))$	0.4(1) 0.5(1)	Ma(9)	0(20)	2 030 (10)	Mo(12)) 1.931 (9)) 2.006 (10)	
O(4)	0.739(1)	0.4899 (1	<i>i</i>) 0.1139 (3)	0.6 (1)	Mo(8)-	-0(20) -0(19)	2.039 (10)	$M_0(12) = 0(9)$ $M_0(12) = 0(7)$	2.000(10) 1) $2.010(4)$	
O(5)	0.991 (1)	0.8927 (7) 0.9121 (3)	0.6 (1)	Mo(8)-	-O(15)	2.061 (10)	Mo(12)	9) 2.059 (10)	
O(6)	0.7576 (9)	0.2447 (*	7) 0.4411 (3)	0.4 (1)	Mo(8)-	-0(10)	2.070 (11)	Mo(12)	0) 2.081 (10)	
O(7)	0.728 (1)	0.3934 (1	() 0.5253 (3)	0.4 (1)	Mo(8)–	-O(3)	2.082 (10)	Mo(12)—O(1	5) 2.088 (10)	
U(8)	0.993(1)	-0.259/((1) 0.0005(2) (1.158(2))	0.4(1)						
O(10)	0.769(1)	0.5019 (7) 0.9469 (3)	0.5 (1)	* Be	tween trans an	nd cis-edge-sl	naring Mo ₈ clus	sters belonging to the	
O(11)	0.7398 (9)	0.2372 (7) 0.2761 (3)	0.5 (1)	same la	ayer.			• • • •	
O(12)	0.994 (1)	-0.2553 (6)0.3335 (3)	0.4 (1)	† Be	tween <i>cis</i> -edge	-sharing Mo ₈	clusters belong	ging to the same layer.	

PrMo ₈ O ₁₄

Pr environment			
$Pr(1) - O(7) \times 2$	2.530 (10)		
$Pr(1) - O(10) \times 2$	2.659 (12)		
$Pr(1) - O(20) \times 2$	2.664 (8)		
$Pr(1) \rightarrow O(8) \times 2$	2.671 (8)		
$Pr(1) - O(1) \times 2$	2.737 (11)		
$Pr(1) - O(3) \times 2$	2.913 (8)		
Pr(2)O(12)	2.420 (7)	Pr(2)O(16)	2.763 (12)
Pr(2)O(5)	2.452 (8)	Pr(2)-O(15)	2.903 (10)
Pr(2)-O(19)	2.468 (11)	Pr(2)-O(21)	2.951 (7)
Pr(2)—O(18)	2.504 (11)	Pr(2)—O(9)	2.981 (8)
Pr(2)O(17)	2.589 (8)	Pr(2)O(14)	3.033 (10)
Pr(2)O(4)	2.701 (13)	Pr(2)-O(13)	3.198 (8)

Data were corrected for Lorentz-polarization and an empirical absorption correction following the *DIFABS* procedure (Walker & Stuart, 1983) was applied to isotropically refined data. Refinements of the occupancy factors for the Pr and Mo sites confirmed that they are fully occupied.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Structure solution and subsequent difference Fourier syntheses: MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). Molecular graphics: ORTEPII (Johnson, 1976). Other calculations: MolEN (Fair, 1990). Computer: Digital MicroVAX 3100.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1118). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gougeon, P. & McCarley, R. E. (1991). Acta Cryst. C47, 241-244.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kerihuel, G. & Gougeon, P. (1995). Acta Cryst. C51, 787-790.
- Leligny, H., Labbé, Ph., Ledesert, M., Hervieu, M., Raveau, B. & McCarroll, W. H. (1993). Acta Cryst. B49, 444–454.
- Leligny, H., Ledesert, M., Labbé, Ph., Raveau, B. & McCarroll, W. H. (1990). J. Solid State Chem. 87, 35-43.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Stout, G. & Jensen, L. H. (1968). In X-ray Structure Determination. London: MacMillan.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1478-1480

σ -Dibarium Pyrophosphate

Ahmed Alaoui ElBelghitti, Abderrahim Elmarzouki and Ali Boukhari

Laboratoire de Chimie du Solide Appliqué, Departement de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat, Morocco

ELIZABETH M. HOLT

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA

(Received 24 August 1994; accepted 6 February 1995)

Abstract

 σ -Dibarium diphosphate, Ba₂P₂O₇, crystallizes in space group $P\bar{6}2m$ with the Ba atoms, separated by 4.703 Å, arranged in columns. Ba atoms are in sites of eleven- and tenfold coordination with Ba(1)—O and Ba(2)—O distances in the ranges 2.776 (8)–2.869 (6) and 2.878 (9)–3.080 (9) Å, respectively. One Ba atom has three interactions with bridging O atoms. P₂O₇ groups have threefold axes passing through the P atoms. The bridging O atom is disordered about these axes, with P—O—P angles of 130 (1) and 134 (4)°.

Comment

Historically, diphosphates of the $A_2P_2O_7$ type, in which A is a divalent cation, have been considered to exist as two types of structure predicated by the ionic radius of A, *i.e.* when the radius of A is less than 0.97 Å, the structure is of the thortveitite type, in which P_2O_7 groups display a staggered conformation (A = Mg, Mn, Fe, Co, Ni, Cu, Zn), and when the radius of A is greater than 0.97 Å (A = Ca, Sr, Ba, Pb), the diphosphate is seen to be in an eclipsed conformation (Brown & Calvo, 1970) and is categorized as the dichromate type.

Compounds of both types have been found to exist in allotropic forms. Thortveitite structures typically show a transition at temperatures below 873 K from a lowtemperature or α form to a high-temperature or β form. Heating leads to a cell volume one quarter that of the ambient temperature form (one half in the case of Cu) and a more symmetrical structure. Typically, α forms show A atoms in layers, with AO₅ and AO₆ polyhedra sharing edges to form an irregular or 'broken-sided' two-dimensional array of hexagons. High-temperature forms are observed in space group C2/m and show a regularization of the hexagon with the introduction of axial distortions in bonds to A. Cu (Robertson & Calvo, 1967, 1968), Co (Krishnamachari